From News Medical Life Sciences
July 30, 2020
To fight viruses, cells can deploy defence enzymes that progressively destroy viral genome strands starting from one of the two strand ends. However, this degradation mechanism is not effective against epidemic viruses such as Zika. In fact, the defence enzyme jams at precise points of the viral genome, which put up a strenuous resistance by assuming “defensive” conformation. This is how the virus succeeds at protecting important pieces of its RNA inside infected cells, as demonstrated by a recent study coordinated by SISSA of Trieste and published in the journal Nature Communications.
Although the capability of some viruses, such as those responsible for Zika infection, dengue or yellow fever, to generate RNAs resistant to the attack from the cellular machinery was already known, the scientists have discovered and explained in this study the mechanistic rationale behind the phenomenon using computer simulations. Some parts of the viral RNA strand react to the progressive enzymatic degradation, which starts from one particular end of the strand, by assuming an extremely compact form.