Karen M. Holcomb,Chilinh Nguyen,Brian D. Foy,Michelle Ahn,Kurt Cramer,Emma T. Lonstrup,Asli Mete,Lisa A. Tell,Christopher M. Barker https://doi.org/10.1371/journal.pntd.0010260
Author summary:
Current mosquito control strategies aimed to prevent pathogen transmission to humans have limited ability to target mosquitoes involved in amplification and spillover transmission of pathogens like West Nile virus (WNV). Additionally, growing prevalence of insecticide resistance in mosquito populations limit the efficacy of these insecticide-based control strategies. Ivermectin (IVM) provides an alternative avenue for control by increasing the mortality of mosquitoes that ingest this drug in bloodmeals. Therefore, IVM treatment of avian species that account for the majority of mosquito bloodmeals during the WNV transmission season could be an effective control strategy. Building on pilot studies indicating the efficacy and feasibility of IVM-deployment for WNV control, we performed a randomized field trial to investigate the impact of IVM-treatment of backyard chickens on local population dynamics of Culex mosquitoes and WNV transmission. We were able to link changes in mosquito populations to reduction in WNV transmission, as measured by chicken seroconversions, through IVM-induced mortality in mosquitoes. However, further work is needed to identify the impact of treatment on mosquito abundance and infection prevalence to fully attribute observed changes to IVM administration. Overall, our results support IVM treatment as a potentially effective alternative to insecticide-based vector control strategies and one that can be used to target WNV transmission on the local scale.
Based on this positive pilot study with sentinel chickens, the authors suggested future research should entail treating peridomestic passerines attracted to backyard bird feeders as a possible approach to reducing the infectious vector population